Extracting Fuzzy Rules from Data for Function Approximation and Pattern Classification
نویسنده
چکیده
Extracting fuzzy rules from data allows relationships in the data to be modeled by "if-then" rules that are easy to understand, verify, and extend. This paper presents methods for extracting fuzzy rules for both function approximation and pattern classification. The rule extraction methods are based on estimating clusters in the data; each cluster obtained corresponds to a fuzzy rule that relates a region in the input space to an output region (or, in the case of pattern classification, to an output class). After the number of rules and initial rule parameters are obtained by cluster estimation, the rule parameters are optimized by gradient descent. Applications to a function approximation problem and to a pattern classification problem are also illustrated.
منابع مشابه
Fuzzy Miner: Extracting Fuzzy Rules from Numerical Patterns
We study the problem of classification as this is presented in the context of data mining. Among the various approaches that are investigated, we focus on the use of Fuzzy Logic for pattern classification, due to its close relation to human thinking. More specifically, this paper presents a heuristic fuzzy method for the classification of numerical data, followed by the design and the implement...
متن کاملModified CLPSO-based fuzzy classification System: Color Image Segmentation
Fuzzy segmentation is an effective way of segmenting out objects in images containing both random noise and varying illumination. In this paper, a modified method based on the Comprehensive Learning Particle Swarm Optimization (CLPSO) is proposed for pixel classification in HSI color space by selecting a fuzzy classification system with minimum number of fuzzy rules and minimum number of incorr...
متن کاملFunction approximation based on fuzzy rules extracted from partitioned numerical data
We present an efficient method for extracting fuzzy rules directly from numerical input-output data for function approximation problems. First, we convert a given function approximation problem into a pattern classification problem. This is done by dividing the universe of discourse of the output variable into multiple intervals, each regarded as a class, and then by assigning a class to each o...
متن کاملA QUADRATIC MARGIN-BASED MODEL FOR WEIGHTING FUZZY CLASSIFICATION RULES INSPIRED BY SUPPORT VECTOR MACHINES
Recently, tuning the weights of the rules in Fuzzy Rule-Base Classification Systems is researched in order to improve the accuracy of classification. In this paper, a margin-based optimization model, inspired by Support Vector Machine classifiers, is proposed to compute these fuzzy rule weights. This approach not only considers both accuracy and generalization criteria in a single objective fu...
متن کاملOn Mining Fuzzy Classification Rules for Imbalanced Data
Fuzzy rule-based classification system (FRBCS) is a popular machine learning technique for classification purposes. One of the major issues when applying it on imbalanced data sets is its biased to the majority class, such that, it performs poorly in respect to the minority class. However many cases the minority classes are more important than the majority ones. In this paper, we have extended ...
متن کامل